QUANTIFICATION OF UNCERTAINTY FROM HIGH-DIMENSIONAL SCATTERED DATA VIA POLYNOMIAL APPROXIMATION

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of Uncertainty from High-dimensional Scattered Data via Polynomial Approximation

This paper discusses a methodology for determining a functional representation of a random process from a collection of scattered pointwise samples. The present work specifically focuses onto random quantities lying in a high-dimensional stochastic space in the context of limited amount of information. The proposed approach involves a procedure for the selection of an approximation basis and th...

متن کامل

Scattered data approximation of fully fuzzy data by quasi-interpolation

Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$.  In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...

متن کامل

Adaptive Polynomial Dimensional Decompositions for Uncertainty Quantification in High Dimensions

The main theme of this paper is intelligently derived truncation strategies for polynomial dimensional decomposition (PDD) of a high-dimensional stochastic response function commonly encountered in engineering and applied sciences. The truncations exploit global sensitivity analysis for defining the relevant pruning criteria, resulting in two new adaptive-sparse versions of PDD: (1) a fully ada...

متن کامل

Uncertainty Quantification in the Classification of High Dimensional Data

Classification of high dimensional data finds wide-ranging applications. In many of these applications equipping the resulting classification with a measure of uncertainty may be as important as the classification itself. In this paper we introduce, develop algorithms for, and investigate the properties of, a variety of Bayesian models for the task of binary classification; via the posterior di...

متن کامل

Uncertainty quantification of high-dimensional complex systems by multiplicative polynomial dimensional decompositions

The central theme of this paper is multiplicative polynomial dimensional decomposition (PDD) methods for solving high-dimensional stochastic problems. When a stochastic response is dominantly of multiplicative nature, the standard PDD approximation, predicated on additive function decomposition, may not provide sufficiently accurate probabilistic solutions of a complex system. To circumvent thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Uncertainty Quantification

سال: 2014

ISSN: 2152-5080

DOI: 10.1615/int.j.uncertaintyquantification.2014008084